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The identification method for stiffness constant parameters and damping coefficient
parameters of connections using test data is derived when a structure is attached to another
structure via connections. Because of the inherent difficulties of deriving spatial models
from test data, the frequency response function (FRF) is used as a response model. The
identification method using the FRFs works for each discrete frequency so that the
connection properties can be found for each frequency and can be averaged using statistical
methods for an accurate identification. If highly sensitive regions are excluded, this
identification method for connection using FRFs gives accurate estimations and can be
applied to a general structure in an easier manner than the modal model methods which
require a mathematical model of the mass, damping and stiffness matrices (or natural
frequencies and mode shapes).
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1. INTRODUCTION

Coupling between one structure and a neighbouring structure via the structural
connections which inevitably exist can have a major influence on the actual values of the
natural frequencies and mode shapes. Hence, accurate dynamic response of the complex
structure is frequently restricted by the capabilities to describe the connection part of the
structure properly. For example, the popular finite element method may not produce
satisfactory dynamic behaviour of a mechanical system due to the uncertainty of the
connection properties. The real structure usually includes many different kinds of joints
(bolted joints, sliding joints, socket joints, etc.) which contain at least some amount of
non-linearity (e.g., clearance non-linearity, dry friction, localized plasticity, etc.). Since
boundary conditions are determined by the connecting joints in a structure, the dynamic
characteristics of the structure are greatly influenced by the modelling of connections
between structural components. This leads to an increasing need for developing improved
analytical models for connection parts.

However, it is extremely difficult to develop accurate analytical models for
connection parts by just considering the geometry and properties of a structure.
Analytical models for connections may have modelling errors due to incorrect stiffness
and mass properties of connections and non-linearities of connections and many other
incorrect configurations of connections. Hence, some means of developing confidence
in or of validating analytical models of connection parts is needed. One way is to use
vibration test data as a criterion, expecting that the analytical modellings of
connections agree with test data.
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In this paper, the identification method for stiffness constant parameters and damping
coefficient parameters of connections using test data is derived when a structure is attached
to another structure via connections. In this modified method, frequency response
functions are used to find physical connection parameters instead of natural frequencies
and mode shapes. By using this new method, connection parameters are directly obtained
from the measured receptances and inertances without introducing mathematical models
of the mass, damping, and stiffness matrices from test natural frequencies and mode
shapes. This research greatly reduces the quantity of test data that must be obtained from
the coupled system because it requires only one numerical value of the frequency response
function among various frequency range values for each connection. One frequency
response function contains an infinite number of numerical values. This is particularly
useful when it is not realistic to obtain a complete set of vibration test data of natural
frequencies and mode shapes for a coupled structure, such as large space structures, large
ocean structures, or complex turbomachinery.

Many attempts at applying frequency-domain test analysis techniques have failed in the
past because of inaccuracies in the FRFs used. Recently, with the availability of better data
acquisition hardware and techniques, the use of measured FRFs for frequency-domain
techniques has become more practical.

First, in this paper, equations to find stiffness and damping constants using the test data
of frequency response functions are derived from the equations of motion for a structure
with connections. Next, for a better understanding of the derived equations, an example
consisting of a continuous beam system is examined.

A number of papers have been published which discuss theoretical structural dynamics,
and a considerable amount of experimental research has been performed which
investigated coupled structures [1–5]. However, the objective of most of these studies was
to estimate the overall behaviour of the coupled structure. Only a few studies have tried
to identify the connection parameters themselves using experimental data [1, 2].
Huckelbridge and Lawrence [1, 2] developed a procedure for identifying physical
connection properties from free and forced response test data, then verified it by utilizing
a system having both a linear and non-linear connection. Interface connections in both
the translational and rotational directions were addressed. Connection properties were
computed in terms of physical parameters so that the physical characteristics of the
connections could be better understood, in addition to providing improved input for the
system model. They used the modal model methods which require mass and stiffness
matrices from test natural frequencies and mode shapes so that identified results have an
error and are highly dependent on the amounts of test data and the mode selected.

Ewins [3, 10] reviewed some of the methods available for making vibration analyses of
complex structures where one or more of the component substructures is modelled from
experimental, rather than theoretical data. The study concentrated on methods of analysis
which were based on response properties.

Time-domain and frequency-domain methods for coupling substructures with general
linear damping were considered in reference [4]. The time-domain method used state
variable notaion for each substructure. The frequency-domain method utilized the discrete
Fourier transform and fast Fourier transform to get transient response solutions. Suarez
and Singh [5] presented a method for synthesizing the real modes of substructures to obtain
the complex modes of the combined structure including non-proportional damping effects
which may exist in the combined structure.

Wang and Liou [6] proposed a method to synthesize the frequency response functions
of a structure which is composed of two beams and linear joint springs and dampers. They
introduced a simple method based on statistical criteria to overcome the problem caused
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by measurement noise. In the synthesis process, it was assumed that one substructure was
fixed completely. However, in an actual measurement situation, grounding a substructure
is a very difficult task. In reference [7], Wang identified the stiffness, mass and damping
matrices of a linear mechanical system using a weighted frequency response function
combined with the instrumental variable method. The effect of measurement noise was of
particular concern.

Yoshimura [8, 9] made experimental measurements to obtain vibratory characteristics
and quantitative values of the rigidity and damping at a bolted joint, welded joint and slide
way which were the representative joints in the machine tool structure under study. He
described methods and procedures for adapting equivalent spring stiffness and damping
coefficients to bolted joints and slide ways in computer-aided machine tool design.

Chen and Cherng [11] presented a simple and effective modal synthesis method via
combined experimental and finite element techniques in which the ‘‘constraint modes
method’’ was used to determine the dynamic properties of complex structures. To satisfy
the rotational compatibility at the common boundary, an experimental procedure was
proposed to measure the generalized dynamic compliance.

In reference [12], a unique methodology was proposed to identify the joint structural
parameters of a machine tool by combining the dynamic data system methodology with
the finite element method. The structural parameter identification of a simple system with
a complete modal matrix was introduced together with modal analysis by the dynamic data
system method.

In reference [13], both time-domain and frequency-domain component mode synthesis
methods were reviewed and according to the types of component modes used in synthesis
process, the methods were further subdivided into cases such as free-interface component
normal modes, constraint modes, inertia-relief attachment modes, etc. A large number of
references about component mode synthesis methods are also given in this paper.

Ghlaim and Martin [14] solved a matrix set involving eigenvalues and eigenvectors of
the substructure, together with a connection matrix to give the complex roots of the system.
Reduction was applied by approximating the substructures by a reduced set of eigenvalues
and an equally reduced set of displacements in the eigenvector.

Ewins and Henry [15] provide the necessary introduction and grounding for a study of
vibration characteristics of individual turbomachine blades including joint characteristics.

Most of these experimental studies of connection parameters involved comparing the
frequency response functions for a range of different cases instead of identifying numerical
values of connections [3–15].

In this paper, instead of comparing the frequency response functions with connections,
methods to find numerical values of the connection parameters for complicated real
structures using frequency response function data have been developed.

2. FORMULATION OF THE EQUATIONS OF MOTION

Assume that a hypothetical structural component is attached to a fixed structure via
springs and dampers as shown in Figure 1.

For a structure with connections, equations of motions are given by reference [6],

[M]6ẍA

ẍa7+[D]6ẋA

ẋa7+[K]6xA

xa7=6 {fA}
{fa}+ {fja}7, (1)

where a represents the region on the connection of the structure, A represents the region
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excluding region a on the structure, {fja} represents the interface force acting on region
a, {fA} and {fa} are applied forces.

Interface force {fja} at connections can be expressed as

k1 xa1 d1 ẋa1 xa1 ẋa1
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Then, equation (1) can be expressed as

[M]6ẍA

ẍa7+0[D]+$[0]
[0]

[0]
[Dc ]%16ẋA

ẋa7+0[K]+$[0]
[0]

[0]
[Kc ]%16xA

xa7=6{fA}
{fa}7. (4)

Let

{qc}= {{xA}, {xa}}T, {fc}= {{fA}, {fa}}T, [Dc4]=$[0]
[0]

[0]
[Dc ]%,

[Kc4]=$[0]
[0]

[0]
[Kc ]%. (5)

Now, equation (4) can be expressed as

[M]{q̈c}+[D]w {q̇c}+[K]w {qc}= {{fc}}, (6)

where [D]w =[D]+ [Dc4], [K]w =[K]+ [Kc4], and subscript w represents connections.
Similarly, for a structure without connections, equations of motions are given by

[M]{q̈c}+[D]{q̇c}+[K]{qc}= {{fc}}. (7)

Figure 1. Fixed structure with connections.
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Let {fc}= {f} ejvt, {qc}= {x} ejvt, so that equations (6) and (7) can be written as:

([K]w + jv[D]w −v2[M]){x} ejvt = {f} ejvt, (8)

([K]+ jv[D]−v2[M]){x} ejvt = {f} ejvt. (9)

Then, using notations in equation (6), connection parameters, jv[Dc4]+ [Kc4], can be
found using the following equations.

jv[Dc4]+ [Kc4]= jv[D]w − jv[D]+ [K]w −[K]. (10)

By adding and subtracting −v2[M] to the left-hand-side, equation (10) becomes

jv[Dc4]+ [Kc4]= ([K]w + jv[D]w −v2[M])− ([K]+ jv[D]−v2[M]), (11)

where subscript w represents the structure with connections.
From equation (9), frequency response function, [H(v)], can be represented by

[H(v)]= {x}/{f}=([K]+ jv[D]−v2[M])−1. (12)

A frequency response function is the relation between the Fourier transform of the system
output (response) and the Fourier transform of the system input (applied force). Hence,
equation (11) becomes

jv[Dc4]+ [Kc4]= [H]−1
w −[H]−1

w/0. (13)

Alternatively,
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Thus, damping coefficient di and spring constant ki can be determined by measuring FRF
of the structure with and without connections.

3. EXAMPLE: IDENTIFICATION OF CONNECTIONS USING FRFs

In this section, the identification of connections using frequency response functions
(FRFs) will be carried out for a continuous beam system. For a system model shown in
Figure 2(a), frequency response functions for the connected structure and unconnected
structure could be obtained from an experiment with the physical model. However,
representative FRFs that could be obtained from the test will be synthesized numerically
from the continuous system model given in Figure 2(b).

The finite element model of a cylinder type beam in Figure 2(b) was used to create
natural frequencies and modes shapes. The outer diameter and the inner diameter of the
cylinder type beam are 2·00 and 1·75 in. each and the length of the beam is 75 in. Young’s
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Figure 2. Example of a beam system for identification of connection using FRFs: (a) system model; (b) beam
model for frequency response functions.

modulus is 30×106 psi and mass density is 5·2827×10−4 (lb− s2/in.2). The first four
natural frequencies of the beam with free–free boundary conditions from experiments are
given by 84·0, 232·0, 450·0 and 734·0, excluding rigid body modes. Analytical natural
frequencies from the finite element model are given by 85·3, 234·0, 456·4, 750·6, and
so on.

Figure 3. Frequency response functions and inverse frequency response functions for a beam system model:
(a) with connection (H(v)conn ); (b) without connection (H(v)free ); (c) with connection (H(v)−1

conn ); (d) without
connection (H(v)−1

free ).
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Figure 4. Identified connection spring constant, kc , as frequency varies.

Frequency response functions and inverse frequency response corresponding to the given
models with connection stiffness 103 (lb/in.) can be numerically simulated using the
following frequency response functions and are plotted in Figure 3.

H(v)conn =0·0000002/(0·000012 −v2)+6·3427342/(257·71242 −v2)

+11·511122/(638·28832 −v2)

+10·572032/(1505·4022 −v2)+9·9883512/(2884·472 −v2)

+9·6281592/(4725·7422 −v2)

+9·2926012/(7015·0262 −v2)+8·9216282/(9743·0362 −v2)

+8·4925232/(12901·362 −v2)

+7·996772/(16480·762 −v2)+7·4343942/(20469·232 −v2)+ · · · · ,

H(v)free =3·9802422/(0·000012 −v2)+9·205432/(0·000012 −v2)

+9·9640132/(536·21352 −v2)

+9·8515792/(1470·3082 −v2)+9·6940612/(2867·6312 −v2)

+9·4827512/(4716·0722 −v2)

+9·2108762/(7008·9232 −v2)+8·8716942/(9738·9742 −v2)

+8·4603282/(12898·582 −v2)

+7·9753092/(16478·822 −v2)+7·4198172/(20467·882 −v2)+ · · · · ,

In simulating FRF of a beam with free–free boundary conditions, rigid body modes were
added that are the first and the second terms in the above second equation. To avoid
numerical difficulties in the inverse process, the natural frequency of the rigid body mode
was assumed to be 0·00001 (rad/s) and an arbitrary rigid body mode shape can be chosen.

If it is now assumed that the above computed frequency response functions are those
obtained from a test, using equation (14), the connection spring constant, kc , can be found
using the following equation.

kc =H(v)−1
conn −H(v)−1

free . (15)

It should also be noted that this expression is not constant but is frequency-dependent
unlike methods involving eigenvalues and modal matrices.
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Figure 5. Identified connection spring constant, kc , when measurement errors exist in the resonance frequencies:
(a) 1% error in the first non-rigid body resonant frequency of H(v)conn ; (b) 1% error in the second non-rigid body
resonant frequency of H(v)conn ; (c) 1% error in the third non-rigid body resonant frequency of H(v)conn ; (d)
expanded plot of data in (c).



5000

4000

3000

2000

1000

–1000

–2000

k
c

rad/s
1500 20001000500

rad/s

1.2 106

1.1 106

1.0 106

900 000

800 000

700 000

k
c

1000 2000 3000 40000

    477

Figure 6. Identified connection spring constant, kc , for uniformly distributed 10% random noises in
magnitudes of H(v)conn and H(v)free .

Figure 7. Identified connection spring constant, kc , for assumed value of kc =106.

Using equation (15), the identified connection spring constant, kc , is plotted in Figure 4
as a function of frequency. Except for small peaks, the identified connection spring
constant was uniformly 103 (lb/in.) (the assumed value). The small peaks occurred at the
frequency where the FRF becomes zero and it is the result of finite numerical precision
in the computation. In practice it may be necessary to use some type of statistically
averaging process for excluding these kinds of peaks over a range of frequencies to
accurately estimate kc using this approach. Namely, small numerical values of FRFs close
to zero should be excluded to avoid infinite values in the inverse process.

In a practical application, the measurements will include errors arising from many
potential sources, and these will affect the estimation of kc . Two different situations will
be considered: (1) errors in measurement of the resonant frequencies; (2) errors in the
amplitude measurement of the FRFs.

In Figure 5(a), kc is plotted for the frequency range of 0–4000 rad/s when a 1% error
exists in the first non-rigid body resonant frequency. In Figure 5(b), kc is plotted for the
frequency range of 0–4000 rad/s when a 1% error exists in the second non-rigid body
resonant frequency. In Figure 5(c), kc is plotted for the frequency range of 0–4000 rad/s
when a 1% error exists in the third non-rigid body resonant frequency. In Figure 5(d),
kc is plotted for the frequency range of 1100–1300 rad/s when a 1% error exists in the third
resonant frequency to check double peaks that exist in Figure 5(c). These kind of double
peaks can be explained using Figures 3(c) and (d). Since kc is the difference between these
two inverse FRF graphs, a small shift in one peak creates double peaks in the kc graph.
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From Figure 5, it can be said that the identification of kc using equation (15) gives
accurate results except values near the frequencies where inverse FRFs become infinity.

Next, uniformly distributed random numerical noise was used to simulate measurement
errors in the amplitude of the FRFs. At each computed point of the simulated FRF, the
amplitude was assumed to be ‘‘contaminated’’ by measurement noise. The noise was
simulated by adding a 210% uniformly distributed random number. Specifically, it was
assumed that:

kc =[A1 H(v)conn ]−1 − [A2 H(v)free ]−1, (16)

where A1 = (1+ a) and A2 = (1+ a) and a is a uniformly distributed random number with
=a =E 10%. The resulting plot of kc as a function of frequency is shown in Figure 6.

If the results in Figure 6 are considered with FRFs or inverse FRFs in Figure 3, it can
be shown that a greater error in kc will be created if the values of FRFs are close to zero
(or if the inverse values of FRFs are close to infinity).

For very high connection stiffness cases of k=106 (lb/in.), identified spring constants
are plotted in Figure 7. As expected, they show slightly higher estimation but still give
useful values.

4. CONCLUSIONS

When an analytical model does not exist, experimentally obtained modal parameters
must be used for the identification of connection parameters and for the explanation of
dynamic properties that are not obvious from the analytical models. However, the cost
to measure all possible modes will be outside the budget constraint, and it is likely that
modes will be missed or that some of the identified modes are not true modes of the
structure. Hence, the modal mode method which uses the natural frequencies and mode
shapes cannot be used when it is difficult to create an accurate modal data from the test.
The identification method of connections in this paper, which used the FRFs directly, has
a better technical merit in this aspect than methods using modal data of natural frequencies
and mode shapes [1, 2] to create system matrices M, C, K because FRFs are easily
measured dynamic properties of the structure. Besides, many difficulties and restrictions
in the calculation of these matrices from test data can be avoided.

The identification method which uses the FRFs, as discussed in the previous section,
works for each discrete frequency so that the connection properties can be found for each
frequency and can be averaged using statistical methods to overcome the problems caused
by measurement noise. The identified connection properties near the frequency ranges
where the FRFs are close to zero should be excluded in the averaging process. If those
highly sensitive regions are excluded, the identification method for connection using FRFs
can be applied to a general structure in an easier manner than the modal model methods
which require a full mathematical model of the mass, damping and stiffness matrices (or
natural frequencies and mode shapes).

Since highly sensitive regions can be excluded during the averaging process, identified
results with only one set of FRFs are more accurate than the modal model method.
Identification of connections using modal model methods was accurate only when full
modal data was available [16]. Also, if FRFs are directly used to find the connection
parameters, curve fitting processes that are required to find natural frequencies and mode
shapes can be omitted in obtaining the test data.

This connection identification method of using FRFs can also be applied to the model
update methods and damage detections of structures using vibration test data.
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